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Note: R[a, b]:= Riemann integrable functions on [a, b].

Q1. (10 marks) Give an example of a bounded function on [a, b], a < b which is not
Riemann integrable.

(Note: We can choose a highly discontinuous bounded function that will not be integrable.)

Let f : [a, b] → R be the function defined by f(x) = x (or 1) for x ∈ Q ∩ [a, b] and
f(x) = 0 for x ∈ [a, b]−Q. |f(x)| ≤ b for all x ∈ [a, b] and hence it is a bounded function.

However the lower sum L(f) = 0 and U(f) = b2−a2
2

(or b − a) 6= 0 since a < b, which
implies that the function is not Riemann integrable.

Q2. (15 marks) Let f : [a, b]→ R be a bounded function and

I =

∫ b

a

f > 0. (1)

Prove that there exists an interval I ⊂ [a, b] such that f > 0 on I.

Proof: Given that f is a bounded function. Let M > 0 such that |f(x)| ≤M for all x. If
f(x) ≤ 0,∀x, then it contradicts the equation (1) in the hypothesis. Fix an

ε =
I

2(M + b− a)
> 0.

and set S = {x ∈ [a, b] : f(x) ≥ ε}.
By definition, we have L(P, f) ≤

∫ b
a
f for all partitions P . By (1), for I/2 > 0, there ex-

ists a partition P = {x0, x1, · · · , xn} such that I/2 < L(P, f) =
∑

imi(xi − xi−1), where
mi = infx∈[xi−1,xi] f(x).

Let A = {k : [xk−1, xk] ∈ S} and B = {k : k /∈ A}. Then

I

2
< L(P, f) =

∑
i∈A

mi(xi − xi−1) +
∑
B

mi(xi − xi−1)

< M
∑
i∈A

(xi − xi−1) + ε
∑
i∈B

(xi − xi−1) < M
∑
i∈A

(xi − xi−1) + ε(b− a)

=⇒ I

2(M + b− a)
<
∑
i∈A

(xi − xi−1)

Thus S contains finite number of intervals at which f is positive. Hence the proof.
(Reference Ex 7.35 Apostol’s book)
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Q3. (15 marks) Let f ∈ R[a, b]. Prove that |f | ∈ R[a, b] and∣∣∣∣ ∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

Since f ∈ R[a, b], for a given ε, there is a partition P = {x0, x1, · · · , xn} of [a, b] such that
U(P, f)− L(P, f) < ε. Then∣∣|f(x)| − |f(y)|

∣∣ ≤ |f(x)− f(y)|
=⇒ supx,y∈[xi−1,xi](|f(x)| − |f(y)|)

∣∣ ≤ supx,y∈[xi−1,xi](f(x)− f(y))

=⇒ supx∈[xi−1,xi]|f(x)| − inf
y∈[xi−1,xi]

|f(y)|
∣∣ ≤ supx∈[xi−1,xi]f(x)− infy∈[xi−1,xi]f(y)

=⇒ U(P, |f |)− L(P, |f |) ≤ U(P, f)− L(P, f) < ε

Thus |f | ∈ R[a, b].

Let c = ±1. Then
∣∣ ∫ b

a
f | = c

∫ b
a
f =

∫ b
a
cf ≤

∫ b
a
|f |.

Q4. (10 marks) Let f ∈ R[a, b]. Prove that for

F (x) =

∫ x

a

f (x ∈ [a, b]),

there is M > 0 such that

|F (x)− F (y)| ≤M |x− y| (x, y ∈ [a, b]).

We use the following property of Riemann integral:
∫ x
a
f +

∫ c
x
f =

∫ c
a
. Hence for x < y,∫ x

a
f −

∫ y
a
f =

∫ x
y
f . Hence |F (x) − F (y)| =

∣∣ ∫ y
x
f
∣∣. Since f ∈ R[a, b], f is bounded.

Hence there exists M > 0 such that |f(x)| ≤ M for all x ∈ [a, b]. Thus by the previous
question,

∣∣ ∫ y
x
f
∣∣ ≤ ∫ y

x
|f | ≤M |x− y|. Similarly we prove for x > y.

Q5. (10 marks) Suppose that (X, d) is a metric space and {Sα}α∈Λ is a collection of
subsets of X. Prove that

∪αSα ⊂ ∪αSα = ∪αSα.

If xα is a point in Sα, then clearly it belongs to ∪αSα. Suppose xα is a limit point of Sα.
Since Sα ⊂ ∪αSα, we have xα ∈ ∪αSα. Thus ∪αSα ⊂ ∪αSα.

Also, Sα ⊂ Sα implies ∪αSα ⊂ ∪αSα which implies ∪αSα ⊂ ∪αSα.

Yet to prove that ∪αSα ⊂ ∪αSα. Let x be a point in ∪αSα. Then x is a limit point of
Sα for some α. Every neighborhood of x contains a point in Sα other than x and hence
contains a point in ∪αSα other that x. That is, x is a limit point of ∪αSα.
Suppose x is a limit point of ∪αSα. To prove that every neighborhood ball Br(x) of x
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with radius r > 0 contains a point z 6= x such that z ∈ ∪αSα. Since x is a limit point
of ∪αSα, neighborhood ball B r

3
(x) contains a point y 6= x such that y ∈ ∪αSα, that is, y

is a limit point of some Sα. Hence the neighborhood ball B r
3
(y) contains a point z 6= y,

z 6= x such that z ∈ Sα. Thus

d(z, x) ≤ d(z, y) + d(y, x) ≤ 2r

3
< r =⇒ z ∈ Br(x).

Since z ∈ Sα ⊂ ∪αSα and r is arbitrary, hence the proof.

Q6. (15 marks) Prove or disprove the following:

(i) A discrete metric space is complete.-True

Let {xn} be a Cauchy sequence. That is, for every ε > 0 there exists N > 0 such that
d(xn, xm) < ε for all n,m ≥ N . Since d( , ) is a discrete metric, xn = xm for all n,m.
Thus every Cauchy sequence is a discrete metric space is a constant sequence. Hence they
converge to the constant. Thus every Cauchy sequence converges in a discrete metric
space. Hence discrete metric spaces are complete.

(ii) An infinite subset of a metric space has a limit point.-False

Consider the metric space X = (0, 1) with usual Euclidean metric d(x, y) = |x− y|. The
sequence { 1

n
}n>1 converge to 0 which does not lie in X. However, every infinite subset of

a compact metric space has a limit point.

(iii) A non-empty complete metric space without isolated points is uncountable.True

Suppose X is a non-empty complete metric space without isolated points and is countable:
X = {x1, x2, · · · }. Consider Un = X\{xn}. Since X has no isolated points, Un is dense
in X for all n. By Baire Category theorem, ∩nUn is dense in X. However, by the
construction, ∩nUn is an empty set which gives the contradiction.

Q7. (15 marks) Prove that B[0, 1] (with uniform metric) is not separable.

Let d(f, g) = supx∈[0,1]{|f(x) − g(x)|} denote the uniform metric in the set B[0, 1] of all
bounded functions on [0, 1]. Consider the uncountable family S = {fx}x∈[0,1] of functions
in B[0, 1] defined as follows: ∀x, y ∈ [0, 1]

fx(y) =

{
1 if x = y

0 elsewhere.

Clearly fx are bounded functions. Also, d(fx, fy) = 1 if x 6= y. Hence for all x, 1/2-radius
neighborhoods of fx are pairwise disjoint.
Recall that a metric space is called separable if it contains a countable dense subset.
Suppose there exists a countable dense subset D = {gn}n∈N of B[0, 1]. Then for every x,
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every neighborhood of fx should intersect D. That is, 1/2-radius neighborhood Nx of fx
contains gnx for some nx ∈ N.

1 = d(fx, fy) ≤ d(fx, gny) + d(gny , fy) < d(fx, gny) + 1/2 =⇒ d(fx, gny) > 1/2.

Thus for every x we find gnx ∈ D, that is, there exists an uncountable subset of D which
is a contradiction.

Q8. (10 marks) Prove that if {xn} and {yn} are Cauchy sequences in (X, d), then {d(xn, yn)}
is a convergent sequence.

Since {xn} and {yn} are Cauchy, for every ε > 0 there exists positive integers N1 and N2

such that d(xn1 , xm1) < ε and d(yn2 , ym2) < ε for all n1,m1 ≥ N1 and n2,m2 ≥ N2. Let
N =max{N1, N2}. Then we have dn = d(xn, yn) ≥ 0 for all n and

dn = d(xn, yn)

≤ d(xn, xm) + d(xm, yn)

≤ d(xn, xm) + d(xm, ym) + d(ym, yn)

≤ 2ε+ d(xm, ym)∀ n,m ≥ N

Thus |dn − dm| ≤ 2ε. Thus {dn} is a Cauchy sequence in R. Since R is complete, {dn} is
a convergent sequence.

Q9. (15 marks) Prove that a closed interval cannot be expressed as the union of a count-
able family of disjoint nonempty closed sets.

Suppose {Fn}n∈N is a countable (two or more) family of disjoint non-empty closed sets
whose union is the closed interval I. Since F1 and F2 are two non-empty disjoint closed
sets, there exists disjoint open sets U1 and U2 such that Fi ⊂ Ui for all i = 1, 2. Let
I1 ⊂ I\U1 be a closed non-empty interval such that I1 ∩ F2 6= ∅. Then I1 ∩ U1 = ∅ and
hence I1 ∩ F1 = ∅. By connectedness of the interval I1 there exists infinitely many Fm
such that I1 ∩ Fn 6= ∅. Now I1 = ∪m(Fm ∩ I1) is a union of countably non-empty disjoint
closed sets. Repeating the argument we find I2 ⊂ I1. Proceeding we have a decreasing
sequence of nonempty closed intervals In such that In ∩ Fn = ∅.
Claim: ∩nIn is non-empty. Let In = [an, bn]. Then the set E of all an’s is bounded
above by b1 and let x be the supremum of E. Since an ≤ an+m ≤ bm+n ≤ bn, we have
am ≤ x ≤ bm for all m. Hence x ∈ Im for all m. Hence the claim.
Let x ∈ ∪nIn ⊂ I. However, since In ∩ Fn = ∅, x /∈ Fn. But I = ∪nFn contradicts x ∈ I.
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