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Note: R]a, b]:= Riemann integrable functions on [a, b].

Q1. (10 marks) Give an example of a bounded function on [a,b], a < b which is not
Riemann integrable.

(Note: We can choose a highly discontinuous bounded function that will not be integrable.)

Let f : [a,b] — R be the function defined by f(x) = x (or 1) for z € QN [a,b] and
f(z) =0for x € [a,b] — Q. |f(x)| < bforall x € [a,b] and hence it is a bounded function.
However the lower sum L(f) = 0 and U(f) = bz;az (or b —a) # 0 since a < b, which
implies that the function is not Riemann integrable.

Q2. (15 marks) Let f : [a,b] — R be a bounded function and

b
1= [1>0 1)
Prove that there exists an interval I C [a, b] such that f > 0 on .

Proof: Given that f is a bounded function. Let M > 0 such that |f(z)| < M for all z. If
f(z) <0,Vz, then it contradicts the equation in the hypothesis. Fix an

I
o tb—a)
and set S = {z € [a,b] : f(x) > €}.
By definition, we have L(P, f) < fabf for all partitions P. By 1' for I/2 > 0, there ex-
ists a partition P = {xq,x1,--- ,2,} such that 1/2 < L(P, f) =
m; = infocp, | 2 f(2).

sm;(z; — x;_1), where

Let A={k: [xy_1,2x] € S} and B={k:k ¢ A}. Then
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Thus S contains finite number of intervals at which f is positive. Hence the proof.
(Reference Ex 7.35 Apostol’s book)
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Q3. (15 marks) Let f € R[a,b]. Prove that |f| € Rla,b] and

’/abf é/ablf!-

Since f € R]a,b], for a given ¢, there is a partition P = {zg, 1, - ,x,} of [a, b] such that
U(P, f)— L(P, f) < e. Then
IF@I= W] < 1f@) - f@)l
= Supl’vyE[CCi—lﬂi]( f(l’)| - ’f(y)Dl < Supx,yé[xifl,xd(f(x) - f(y))
= SUPze[w;_1,2i) f(.T)’ - ye[inf 2] ’f(y)H < Supwe[xifl,zi]f<x) - Z‘nfyG[évifl,l"i}f(y>

— U(P,|f]) = L(P,|f])
Thus |f| € Rla,b].

IN

U(P, f)— L(P, f) <e

Let ¢ = 1. Then ‘f:f]:cfff:ffcf§f5|f|
Q4. (10 marks) Let f € R[a,b]. Prove that for
Fa)= [ 1 @welat)
there is M > 0 such that

[F(z) = F(y)l < Mlz —y[  (2,y € [a,b]).

We use the following property of Riemann integral: fax f+ f; f= f: Hence for z < v,
Jof=J.f= [, f Hence |F(z) - F(y)| = | [V f|. Since f € Rla,b], f is bounded.
Hence there exists M > 0 such that |f(z)] < M for all z € [a,b]. Thus by the previous
question, fzy f} < ff |f| < M|z — y|. Similarly we prove for z > y.

Q5. (10 marks) Suppose that (X, d) is a metric space and {Ss}aen is a collection of
subsets of X. Prove that

UaSe C UgSy = Uy S,y

If x, is a point in S,, then clearly it belongs to UaS,. Suppose z, is a limit point of S,.
Since S, C UyS,, we have x, € U,S,. Thus Uy,S, C UyS,.

Also, S, C S, implies Uy Sy C UaS, which implies Uy Sy C UaSa.

Yet to prove that U,S, C U,S,. Let = be a point in U,S,. Then x is a limit point of
S, for some a.. Every neighborhood of = contains a point in S, other than x and hence
contains a point in U,S, other that x. That is, x is a limit point of U,S,.

Suppose z is a limit point of U,S,. To prove that every neighborhood ball B,(z) of z

2



with radius r» > 0 contains a point z # x such that z € U,S,. Since z is a limit point
of UaS,, neighborhood ball Bg(x) contains a point y # x such that y € U,S,, that is, y
is a limit point of some S,. Hence the neighborhood ball B (y) contains a point z # ¥,
z # x such that z € S,. Thus

2
d(z,z) < d(z,y) +d(y,z) < éﬁ <r = z € B.(x).

Since z € S, C U,S, and r is arbitrary, hence the proof.

Q6. (15 marks) Prove or disprove the following:

(i) A discrete metric space is complete.-True

Let {z,} be a Cauchy sequence. That is, for every ¢ > 0 there exists N > 0 such that
d(xp, xy,) < € for all n,m > N. Since d( , ) is a discrete metric, z,, = z,, for all n,m.
Thus every Cauchy sequence is a discrete metric space is a constant sequence. Hence they
converge to the constant. Thus every Cauchy sequence converges in a discrete metric
space. Hence discrete metric spaces are complete.

(ii) An infinite subset of a metric space has a limit point.-False

Consider the metric space X = (0, 1) with usual Euclidean metric d(x,y) = |z — y|. The
sequence {%}n>1 converge to 0 which does not lie in X. However, every infinite subset of
a compact metric space has a limit point.

(iii) A non-empty complete metric space without isolated points is uncountable. True

Suppose X is a non-empty complete metric space without isolated points and is countable:
X = {xy,29,---}. Consider U, = X\{z,}. Since X has no isolated points, U, is dense
in X for all n. By Baire Category theorem, N,U, is dense in X. However, by the
construction, N, U, is an empty set which gives the contradiction.

Q7. (15 marks) Prove that B[0, 1] (with uniform metric) is not separable.

Let d(f,g) = sup,e{|f(z) — g(z)|} denote the uniform metric in the set B[0, 1] of all
bounded functions on [0, 1]. Consider the uncountable family S = {f,}scp0,1] of functions
in B[0,1] defined as follows: Vz,y € [0, 1]

f(y) = {1 o=y

0 elsewhere.

Clearly f, are bounded functions. Also, d(fs, f,) = 1 if  # y. Hence for all z, 1/2-radius
neighborhoods of f, are pairwise disjoint.

Recall that a metric space is called separable if it contains a countable dense subset.
Suppose there exists a countable dense subset D = {g, }nen of B[0,1]. Then for every z,



every neighborhood of f, should intersect D. That is, 1/2-radius neighborhood N, of f,
contains g, for some n, € N.

L= d(fe, fy) < d(fer n,) + d(Gn,, fy) < d(fes9n,) +1/2 = d(fe, gn,) > 1/2.

Thus for every x we find g,,, € D, that is, there exists an uncountable subset of D which
is a contradiction.

Q8. (10 marks) Prove that if {x, } and {y,, } are Cauchy sequences in (X, d), then {d(z,,y,)}
is a convergent sequence.

Since {z,} and {y,} are Cauchy, for every ¢ > 0 there exists positive integers N; and N;
such that d(x,,, Tm,) < € and d(Yn,, Ym,) < € for all ny,m; > Ny and ny, ms > Nj. Let
N =max{Ny, Na}. Then we have d,, = d(x,,y,) > 0 for all n and

(X, Trm) + ATy Yn)
d(Zn, ) + A X, Ym) + (Y, Yn)
2¢ + d(Tp, Yym)V n,m > N

VANVANRPVA

Thus |d, — dn| < 2¢. Thus {d,} is a Cauchy sequence in R. Since R is complete, {d,} is
a convergent sequence.

Q9. (15 marks) Prove that a closed interval cannot be expressed as the union of a count-
able family of disjoint nonempty closed sets.

Suppose {F,}nen is a countable (two or more) family of disjoint non-empty closed sets
whose union is the closed interval I. Since F; and F5 are two non-empty disjoint closed
sets, there exists disjoint open sets U; and U; such that F; C U; for all ¢ = 1,2. Let
I, € I\U; be a closed non-empty interval such that Iy N Fy # (). Then I; NU; = () and
hence I; N F; = (). By connectedness of the interval I; there exists infinitely many F,
such that I; N F,, # 0. Now I} = U,,(F,, N I;) is a union of countably non-empty disjoint
closed sets. Repeating the argument we find I, C ;. Proceeding we have a decreasing
sequence of nonempty closed intervals I,, such that I,, N F, = (.

Claim: N,I, is non-empty. Let I, = [a,,b,]. Then the set E of all a,’s is bounded
above by b; and let x be the supremum of E. Since a, < apim < bypan < by, we have
am < x <b,, for all m. Hence x € I,,, for all m. Hence the claim.

Let z € U, I, C I. However, since I, N F,, =0, x ¢ F,. But I = U, F,, contradicts = € I.



